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Abstract-A triaxial elasto-plastic stress- strain relationship of a continuum solid derived from a
base of granular assembly is presented. It shows a macroscopic material nonlinearity by considering
the local geometric nonlinearity of the material on the microscopic level of the granular assembly.
For a given strain increment causing both elastic and plastic strain increments in an assembly, the
elastic strain is calculated by the known uniform strain theory of granular materials, and the
corresponding plastic strain increment is computed from the mechanism resulting from the strain
due to slip between particles. Responses of two construction matcrials, stcel and concrete, predicted
by the proposed constitutive law are illustrated. Some other well-known physical phenomena like
dilatation, necking and the conilnement effect are also addressed under various loading cases,
including uniaxial tension and compression, cyclic loading. biaxial and triaxial loadings.

1. INTRODUCTION

The macroscopic nonlinearity of materials can be considered a result of local geometric
nonlinearity at the microscopic level. However, any description of nonlinearity at the
microscopic level is not meaningful without the accompanying micromechanical consti
tutive models of granular assembly. Also, the micromechanics of a granular material
provides a means of interpreting the discrepancy in the predicted strengths for most engin
eering materials, between the value determined by considering their physical properties
on a microscopic scale and that on a macroscopic scale. Consequently. the study of
micromechanical behavior of granular materials has been an active research subject during
the past 20 years. Some numerical analyses of granular materials, e.g. the well-known
discrete element method (Cundall, 1971 ; Cundall and Strack, 1979, 1983), have been proved
feasible for verifying theoretical results (Drescher and deJosselin deJ ong, 1972; ada 1972;
Shukla et al., 1990). Generally, the micromechanic theories ofgranular materials are derived
from the effects of the fabric property and the contact law between packing particles on the
assembly behavior (Chang, 1987; Bathurst and Rothcnburg, 1988; Chang and Misra,
1989, 1990; Chang and Ma, 1991), and various constitutive equations based on different
hypotheses have been proposed to verify those theories. Among others, some researchers
(Liao and Chang, 1989; Chang and Misra 1989, 1990) developed a microstructural con
tinuum model based on a uniform strain assumption. On the other hand, local defects and
stability of granular particles during the loading process have been proved to influence the
response of granular material (Liao and Chang, 1990); formulation of micromechanical
behavior of granular materials based on the concept of fabric tensor (ada el al., 1982) have
been reported to yield satisfactory results (Cowin and Satake, 1978: Christoffersen cl al.,
1981 ; Chang, 1987; Bathurst and Rothenburg, 1988; Satake and Jenkins, 1989): and a
plasticity model based on granular mechanics for a range of regular packings of identical
rigid spheres has been reported (Thornton and Barnes, 1982).

Concepts of the proposed constitutive equations presented in this paper are based on
the mechanism of slip and separation between particles. The concept of slip has been used
by Taylor (1938) to model the stress-strain relationship of face-centered cubic (f.c.c.)
polycrystalline metals. There are 12 slip systems for f.c.c. crystals, of which only five slip
systems are required to define the strain of aggregate produced by slips alone, while it is
assumed that there is no volumetric change of strain. Taylor (1938) has applied the principle
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of virtual work to determine which five out of the 12 slip systems are active. He also assumes
a static constraint in the model, in which the strain in each grain is uniform and equal to
the macroscopic aggregate strain. In this paper, instead of prescribing static constraints, as
applied in the early slip models (Taylor, 1938; Batdorf and Budiansky, 1949; Lin and Ito,
1966), kinematic constraints similar to that of a microplane model (Bazant and Oh, 1985;
Prat, 1987) are imposed on the granular assembly to derive the shear strain tensor of a
particle. The slip plane is assumed to be dependent on the resolved shear stress alone and
independent of the normal pressure on the plane. Both the effects of normal pressure and
the resolved shear force on the interface of particles are included in the current formulation.
In addition to the plastic deformation due to excessive slip, the degradation of stiffness of
assembly due to particle separation is also considered. Furthermore, the slip systems of
granular assembly in general may occur in an infinite number of ways, and it is the aim of
this study to present an approach that is suitable to model various types of loading
histories and different materials. Numerical examples of responses of two commonly used
construction materials, steel and concrete, under various loading cases, e.g. uniaxial, biaxial,
standard triaxial, cyclic loadings, are illustrated.

2. PLASTIC STRAINS OF GRANULAR ASSEMBL Y

During the loading process, a granular assembly will experience both elastic and plastic
deformations. The calculation ofelastic strain increment for a packing of granular assembly
is based on an affine assumption, that is, the particle displacement can be obtained by an
assumed uniform strain field, while plastic strains result from local deformation of granular
assembly. A slip between particles occurring at a microscopic level will contribute to its
macroscopic deformation and can be considered as the cause of plastic strain. In this study,
the plastic strain is assumed to be obtained by accumulating local plastic deformation
individually without interference among particulates. Thus it belongs to a non-affine
assumption. The elastic and plastic strains of a particle are computed according to the given
shear resistance between particles. For the following derivation of micromechanics, the
granular assembly is assumed to be composed of equal-size rigid spherical particles.

2.1. Particle strain due to slip at contact
When a shear force between two particles exceeds its shear resistance, slip at contact

occurs. The shear resistance of particles, 5 01,,,, can be represented as follows when two
particles are in a state of squeezing, i.e.

(1)

where N is the contact normal force; R, is the shear resistance when N is zero and /L is the
coefficient of internal shear friction at contacts. If the contact normal force tends to separate
two particles, eqn (1) is applicable until the bond strength at contact is reached. By checking
the maximum shear stress against the allowable shear capacity of eqn (1) at the contact
point of particles, the amount of slip ~1I1 can be obtained by subtracting the elastic portion
from the total incremental displacement between two particles using the following equation:

(2)

where ~lIi is the contact slip along local ith direction tangential to the contact normal n; K i

is the initial tangential contact spring constant between particles; 'til is the mean packing
strain, and bill is the branch vector (vector connecting the centroid of two contacted
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Fig. I. Local coordinate system.
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particles) along the n direction of the local coordinate system, as shown in Fig. 1. Note that
the uniform strain theory (Chang and Misra, 1990) has been applied in eqn (1). If a slip
occurs at a certain contact point between two particles, it is assumed that an equivalent
local plastic shear strain is induced in both particles along the slip direction. This local plastic
strain is related to the amount of shear deformations of the particles under consideration. As
an example, a single typical particle a with slip increments !:1~~ and !:1~~ at contact point c
along the sand t directions, respectively, on a tangential plane containing normal vector n
is shown in Fig. 2. Then the total external complementary virtual work increment b(d WE)
due to a slip !:1~~ and a virtual contact shear force bf~~, acting along the same s direction of
the particle, is given by

b(dWE) = -!:1~'; 6f;:~ (no sum over a, c, nand .1'). (3)

The internal complementary virtual work of the particle, bed WI), due to a slip at c can be
obtained by the volume integration over the product of strain increment and virtual stress
of the particle, i.e.

(4)

where dEij = incremental strain tensor of particle; 6fJii = virtual stress tensor; va = volume
of particle; and i,j = 1-3. Note that the multiplication of the nine components of strain
and stress in eqn (4) can be replaced by two single values dElls and bfJ"" which are the only
two non-zero components when slip occurs, where dElls and 6fJns are the strain increment
and virtual stress in the s direction on the plane with a normal vector n, respectively. Thus
eqn (4) becomes

(5)

where bfJ:, and dE:, are the conjugate stress and strain of the particle, respectively. Although
the values of bfJ:, and dE:, can be selected arbitrarily, provided that they satisfy eqn (5),
one of the two quantities may be defined first with certain physical significance and the

a

Fig. 2. Slip of particle in local coordinate system.
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other may then be computed accordingly. If we assume that thc strcss and strain fields are
nearly uniform for a particle subjected to boundary contact forces, we can select de~\ as the
mean value of dens and bO'~\ as the mean value of bO'ns of the particle, respectively. This
assumption is simply an approximation to the calculation of virtual work of eqn (5). The
deviation to the actual value depends on the boundary conditions of each particle in the
assembly. Thus, according to the theorem of stress means (Landau and Lipschitz, 1959;
Christoffersen et al., 1981), the mean shear stress, (j~::, of the particle a due to a contact
shear force f~~ at c is

1
ij;:~ = - r~:' f::~ (no sum over a, c and n),

va
(6)

where r~c is the component in the n direction of the position vector from the centroid of
particle a to the contact point c. The average stress tensor introduced in eqn (6) has all the
properties of Cauchy stress tensor in continuum mechanics (Rothenberg and Selvadurai,
1981 ; Chang and Misra, 1989). It satisfies the equation of static equilibrium and the relation
between the traction and the internal stress. Substituting eqn (6) into eqn (5) gives

b(d WI) = dE~:~bij~.~ va = dE;:~r~:' bf::~ (no sum over a, c, nand s), (7)

where de!~\. in eqn (5) has been replaced by the mean strain increment, dE~:~. By the principle
of virtual work, the sum of virtual work resulting from internal forces and that from
external forces for a solid in a state of equilibrium is zero, i.e.

From eqns (3) and (7), we can obtain the incremental mean strain dE~:~ given as

dE~~r::c bf~:~ - A::~ bP:~ = 0 (no sum over a, c, nand s),

(8)

(9)

(no sum over a, C and n).

From eqn (9), therefore, it can be seen that the local strain of a particle due to slip is defined
as the relative displacement A~~ at contact, divided by r~c, the arm measured from the center
of the particle to the slip. Similarly, the local shear strain increment dE::; along the orthogonal
tangent direction t due to a slip A~:' acting in the same direction is given by

L1(/(
'It

(no sum over a, C and n). (10)

Because it is assumed that the local plastic deformations occur individually, the effects
of dE~: and de~:: need to be transformed separately to the global coordinate system, and
then combined. Therefore, the corresponding mean plastic strain increment tensor, dt0" of
a typical particle a in the global coordinate system due to a single slip at the contact point
c, can be expressed in terms of de~:: and dE::: as follows:

(II)

Therefore, the incremental mean strain tensor of the particle, de:}, under a slip defor
mation is calculated by the summation of all individual strains distributed over all contact
points, i.e.
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(12)

2.2. Equivalent plastic strain olpacking
In this paper, the equivalent mean plastic strain increment tensor of the packing, deii ,

is collected from the value of each particular mean strain increment derl of packing by a
volume average, and is given by

I
d ,P - - " d-a vac'lj - V 7: eil , (13)

where the summation is carried over all the particles. Substituting eqns (11) and (12) into
eqn (13) gives

(14)

where the superscript p stands for plastic strain; the inner summation sums over all contact
points c for the particle a, and the outer summation over all particles a of the packing; va
is the volume of the particle; and V is the volume of the representative packing including
voids. It can be shown that the volumetric change is equal to zero in eqn (14), i.e.
def, = O.

Since the slip of particles can be regarded as an energy dissipation of the system, it
follows that the plastic portion in eqn (14) is irreversible unless it is compensated by an
equal but opposite permanent plastic strain imposed by a reverse loading. This idea may
be easily extended to modeling a cyclic loading case, as will be shown later.

3. CONSTITUTIVE EQUATIONS

A general elasto-plastic stress-strain relationship based on the characteristics of granu
lar materials is presented here. Time effect is not included in the formulation, therefore
only elastic deformation and plastic deformation will be considered. Generally, upon
loading, separation and/or slip between particles of granular assembly will occur. It is
considered that slip is a relative contact motion produced by sliding and/or rolling of
particles, such that the contact points always remain in contact after slip. Thus the deformed
packing is only slightly rearranged to dissipate energy, but undertakes a permanent defor
mation. In this paper, since the global plastic deformation due to slips at all contact points
is irreversible, it is assumed that the stabilized packing after slip deformation still behaves
as an elastic solid. This phenomenon may be referred to as a "dissipative system". Further,
slip motion is assumed to be the only cause of plastic strain. Since the permanent plastic
strain increment resulting from this plastic response is subtracted from the total strain
increment given by the unifrom strain theory (Chang and Misra, 1990), the corresponding
stress increment associated with the remaining elastic strain increment can be obtained
through generalized Hooke's law.

For a packing of granular assembly subjected to a slip deformation under combined
stresses, the resulting strain of the packing is assumed to be decoupled into elastic and
plastic components. Therefore, for a given external strain increment dekl of the packing, the
associated mean stress increment of packing is assumed to be equal to the elastic stress
increment as given by

(15)

where C l/ kl is the fourth-order tensor of elastic moduli of the packing; dalj is the incremental
mean stress tensor; and derl is the incremental plastic mean strain tensor. The tensor CUki

of elastic moduli can be calculated by the uniform strain theory (Chang and Misra, 1990),
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based on the individual mechanical constants at each contact of the granular assembly, and
is written as

(16)

where L; and L k are branch vectors joining the centers of two particles; and K n , K s and K t

are stiffness constants between particles of the granular assembly in the directions of the
local coordinate system n, sand t, respectively, as shown in Fig. 1, in which c denotes the
location of contact point. In eqn (16), the letter c underneath the summation symbol
indicates that the summation is carried over all contact points under consideration. The
local coordinate system is constructed for each contact point by three orthogonal base unit
vectors with the vector n normal to the contact area, and the tangent vectors sand t being
chosen arbitrarily.

4. NUMERICAL EXAMPLES

For the following numerical formulations, all particles are assumed to be spheres of
equal size, and major variables are the normal spring constant Km tangential spring con
stants K" K" shear resistance coefficients R, (cohesion), f1 (friction coefficient) and bond
strength T (tensile strength) at contact between particles. The values of K", K, and K t can
be expressed in terms of the initial Young's modulus and Poisson's ratio as given in the
following equations (Chen, 1993) :

E
K" = Cm (I-2v)'

E(I-4v)
K, = K, = Cm (l+v)(I_2v)'

3V
Cm=4~'Ncr

(17)

where N c = total number of contacts of the whole packing; r = radius of particle; V = vo
lume of packing including voids; E and v = Young's modulus and Poisson's ratio, respec
tively, of the packing in a representative volume. The parameters in eqn (17) are those
factors that are required to characterize each different packing configuration. They must
be properly estimated in order to comply with given material constants, i.e. Young's
modulus E and Poisson's ratio v. In this paper, the effects of particle rotation are neglected
and only the stretch spring and shear spring between particles are considered. The elastic
limit of bonding strength determines whether the particles are still contacted under loading.

The response of each incremental loading follows eqn (IS). At the very beginning, the
material constants of the constitutive law are calculated by assuming the packing is in an
elastic state, and are then used to calculate the strain of the packing under the given loading.
From this strain increment field the corresponding displacement increment field can be
obtained by the assumed affine displacement field for elastic strain and non-affine dis
placement field for plastic strain, as previously discussed. When the bond between particles
fails under an applied load, the local normal stiffness K n drops to zero at the contact points,
and the elasticity matrix Cijkl in eqn (15) is reformed. By checking the displacement at each
contact against the allowable elastic limit, the amount of slip of the particles can be found.
Finally, from eqns (12) and (14), the average plastic strain of the packing is obtained and
then substituted into eqn (15) to calculate the stresses or strains. The same procedure is
repeated until the end ofload process is reached. The flow chart for this numerical procedure
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Initialization

cij=O ct =0

I- Input strain increment
deij

I
Update total strain

(cij)" =(cij)" _} + dcy

I
Affine elastic strain

""""
(cij)n = (cij)n-( c&)n

1

Calculate contact update plastic strain
displacement and force

Ui =(Eij)nlj ( c!.)
Ii =K;j Uj

!J n
I

~ Compute equivalent
No Yes plastic strain

contact slip increment by Eqs(9)-(l3)
(dc!.)

!J n

Fig. 3. Flow chart for numerical calculations.

is given in Fig. 3. Detailed numerical data will be given in the following individual illus
tration. Responses of two commonly used construction materials, i.e. concrete and steel,
under several loading conditions, will be illustrated in this paper to demonstrate the
applications of the proposed elastic-plastic constitutive model of granular materials.

4.1. Response olsteel with different strengths
Because the Young's moduli E and Poisson's ratio v of various structural steels are

insensitive to their compositions, E and v are assumed to be 207 GPa and 0.24, respectively,
in the following examples. The strength of steel depends on its slip resistance, or shear
resistance upon the dislocation motion, which is a function of particle size, coordination
number and contact mechanical properties. This shear resistance is assumed to be provided
by cohesion only. A key concept to properly simulate the response of steel using the current
model is that the ratio of normal strength to shear resistance at contacts between particles
should be large enough to assure that the slip will occur before separation or crushing of
the particles. The resulting tensile and compressive stress-strain curves are shown in Fig.
4, which resembles the behavior of an elastic-perfectly-plastic material. It can be seen from
the response curves that the volumetric ratio increases with strain up to the yield point and
remains constant thereafter, which means that, in order to maintain a constant volume
with an increasing longitudinal strain during the loading process, the lateral strain must
decrease. Thus a necking phenomenon of steel is implied in this numerical simulation,
which is consistent with the observed behavior of steel in real life.

The results of a cyclic load test for three elastic-perfectly-plastic steels are given in Fig.
5. The plastic strain introduced in one direction will not be recovered in the unloading
phase until yielding occurs again under a reverse loading and produces an equal but
opposite plastic strain. The residual stresses during the reverse of loading that may cause
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Fig. 5. Stress-strain curves of cyclic loadings: F, = 274 (MPa). F, = 343 (MPa). F,. = 411 (MPa).

Bauchinger's effects are not considered for the moment. Thus in Fig. 5 the behavior in
compression is almost the same as that in tension.

4.2. Re.\ponse oj concrete under uniaxial loading
In the subsequent numerical examples of concrete, the initial Poisson's ratio is selected

as 0.20 and the initial Young's modulus Ec corresponding to a given 28-day compressive
strength f:C is obtained through the following empirical formula (Mindess and Young,
1981), eqn (18), in order to comply with most testing conditions for normal weight concretes,

Eo = 4.730Jf:C GPa. (18)

For most cementitious materials, such as concrete, the bond cracks and micro-cracks
due to shrinkage exist even before the loading is applied. These cracks are relatively stable
until the concrete experiences a stress of about 30% of its ultimate strength, and thereafter
they begin to propagate. At a stress of about 70-90% of the ultimate strength, mortar
cracks start to appear and merge with the existing bond cracks and micro-cracks to form
continuous cracks. Beyond the critical stress point, i.e. the point at which the concrete
volume begins to dilate or Poisson's ratio begins to increase, these continuous cracks then
grow rapidly at the stress near the concrete failure strength until failure.

In general. aggregate strength is always large enough to prevent crushing, except in
high-strength concretes or light-weight concretes, where mortar exhibits a relatively higher
strength. The strength of the loading chain through aggregates and mortars in compression
is much higher than that in tension. Thus, even when concrete is subjected to an external
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Table I. Results of concrete with various strengths
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Material properties

EJGPa)
21
25
28
31

f; (MPa) [, f; (MPa)
0.20 21.00 0.00105 3.86
0.20 28.00 0.00120 5.15
0.20 35.00 0.00130 6.23
0.20 42.00 0.00140 7.90

compressive loading other than a hydrostatic load, the failure is still controlled by its tensile
capacity, i.e. its crack resistance. Therefore, the strength of concrete depends on the bond
strength between particles, i.e. the strength of mortar matrix, which is a function of cement
property, particle size and contact surface condition. The key idea to predict correct strength
using the proposed model is using an appropriate value of bond capacity between particles.
This value also determines the tensile strength of concrete.

The uniaxial responses of concretes obtained from the proposed constitutive law are
shown in Table 1. The tensile strengths of concretes are also calculated in the table, which
range from O.lf~ to 0.2f~, approximately. These results are reasonable as compared with
the real tensile strengths of concrete (Mindess and Young, 1981).

The corresponding stress-strain behaviors of these concretes are shown in Fig. 6. From
Fig. 6(b), it can be seen that the volumetric strain decreases with compressive loading until
the concrete is about to reach its ultimate strength, and then the concrete starts to dilate
and shows a rapid increase of dilatancy near its peak strength. This behavior is consistent
with previous experimental results (Kupfer et al., 1969). Meanwhile, through numerical
manipulation, it is observed that the value of shear friction affects only the portion of the
stress-strain curves beyond peak strength.

In the above examples, the ultimate strains at peak stresses are slightly lower than
previous reported values, which range from 0.0015 to 0.002 (Kupfer et al., 1969). This
discrepancy can be attributed to the fact that an idealized simple assumption in the micro
scopic constitutive law is applied to a rather heterogeneous concrete material in contrast to
the previous homogeneous material of steel. For instance, a single value of bond strength
is applied to the concrete packing for both curves in the Fig. 6. This assumption neglects
the fact that various bond strengths are randomly distributed over the material due to the
inherent properties of concrete in practice. If this factor had been considered in the simu
lation, the stress-strain curve would have softened gradually and the ultimate strain at peak
stress would have been slightly higher, depending upon the degree of scattering. As a matter
offact, this assertion had been partially confirmed in several numerical trials. In Fig. 6(b),
the compaction of concrete occurs up to the peak stress, and thereafter exhibits a pattern
of dilatancy. This behavior has been verified by experiment (Kupfer et al., 1969). For
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Fig. 8. Concrete under biaxial loading :r; = 21 (MPa), Nelissen (1972), Kupfer et al. (1969).

concretes under cyclic loading, the results are illustrated in Fig. 7, together with the results
from monotonic loading.

4.3. Response of concrete under biaxial loading
The response ofconcrete under biaxial loading is ofgreat importance, because in many

circumstances concrete members need to be analyzed in a biaxial state. Test data (Kupfer
et al., 1969; Nelissen, 1972) have indicated that the maximum strength increase is approxi
mately 25% at a stress ratio of0',/0'2 = 0.5, and is about 16% at an equal biaxial compression
state (0',/0'2 = 1.0). These strength increases are also dependent on the compressive strength
of concrete.

The proposed model is also applied to a concrete test under biaxial loadings, as shown
in Fig. 8. In Fig. 8, the numerical values show a satisfactory match with the experimental
data. It should pointed out that all the contact properties used in this example are the same
as those obtained from previous uniaxial examples. All the numerical values are compared
in Table 2.

Table 2. Results of concrete under various biaxial loadings

r; = 21 (MPa)
(flU; (f,U;

Kupfer et al. (1969)
u; = 19.1 MPa)

(Jl/f~: (J2/f~

Nelissen (1972)
(J,/f~ (J2/f~

0.219
-1.000
~1.227

-1.260
~ 1.158

0.219
0.000

-0.222
-0.800
~ 1.158

0.100
0.024

-1.230
-1.250
-1.160

0.100
0.092

-0.290
-0.660
-1.160

0.064
-1.000
-1.100
-1.273
-1.182

0.064
0.000

-0.182
-0.836
-1.182
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Fig. 9. Concrete response under various confinements: (J, = (J3 = 0 (MPa), (J, = (J3 = 5 (MPa),
(J, = (J3 = 10 (MPa), (J, = (J3 = 15 (MPa),!; = 21 (MPa), (J, = (J3 = 0 (MPa), (J, = (J3 = 5 (MPa),

(J, = (J3 = 10 (MPa), (J, = (J3 = 15 (MPa),!; = 21 (MPa).

4.4. Response ofconcrete with different degrees ofconfinement
Confinement effects of concrete are important in the design of reinforced concrete

structures, especially when considering the failure mode of concrete changing from brittle
to ductile. In practice, concrete is usually confined by transverse reinforcement in the form
of closely spaced steel spirals or hoops. The increase of lateral pressure can substantially
increase the ultimate strength and ductility of concrete. Lateral confinement also reduces
the tendency of internal cracking and unstable volume increase just prior to failure.

When using the proposed model, concrete is under a hydrostatic confinement first, and
then a uniaxial increase of strain is applied incrementally up to the point of failure. The
resulting stress-strain curves for concrete with strengths,f~ = 21, 35 and 42 MPa, respec
tively, under standard triaxial loading are illustrated in Fig. 9. The dilatancy of concrete is
also shown in Fig. 9(b). The gain of strength and ductility as a result of confinement effects
is listed in Table 3.

Previous results of concrete experiments with confinement effect have shown that the
strength increase is approximately 4.1 times the lateral pressure (Richart et al., 1928). In
the current study, axial strength increases about four times the confining pressure as the
confined pressure reaches its peak value. The results show a good agreement of confined
concrete strengths between numerical and experimental data. However, the ultimate strains
at peak stress in the example are lower than previously reported values (between 0.0021
and 0.0050) (Ahmad and Shah, 1982). The reason for this discrepancy is similar to that
mentioned in the discussion for uniaxial load, i.e. the proposed model assumes an idealized
contact property neglecting the inherent randomly distributed heterogeneous properties of
concrete.

Table 3. Results of concretes with various confinement pressures

Concrete testing
Confined
pressure I; = 21 (MPa) I; = 35 (MPa) I; = 42 (MPa)
(;2 = 0") 0, (J, Co 0, (J, Co 0, (J, Co

0.0 0.0011 21.95 0.0013 35.00 0.0014 42.00
5.0 0.0020 41.13 4.04 0.0020 55.58 4.00 0.0020 62.59 4.02

10.0 0.0029 61.88 4.09 0.0026 75.87 4.04 0.0026 83.08 4.02
15.0 0.0042 83.04 4.13 0.0032 96.51 4.02 0.0032 103.57 4.02

Note: Co = «(J, - 1;)/(J2'

Richart
el al.
(1928)

(J, Co

20.42
40.51 4.05
60.59 4.02
80.68 4.02
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5. DISCUSSION AND CONCLUSION

From the theoretical derivations and numerical results of this study, the folIowjng
conclusions are drawn:

(I) The proposed constitutive model is based on the idea of slip of particles in a
granular assembly, which is a discrete approach. This model, however, can be satisfactorily
applied to predicting the response of continuum media, such as steel and concrete under
various loading cases. Taking concrete as an example, using a unique contact property, the
model offers a satisfactory match with experimental data in four different loading histories:
uniaxial, biaxial, triaxial and cyclic. Thus it can be anticipated that the proposed model is
also applicable to a general multi-axial loading condition, e.g. all three principal stresses
are independently applied.

(2) The proposed model provides a proper description of the dilatancy of concrete at
a stress level near the failure strength, which is quite useful in the design of steel confinement
for reinforced concrete members.

(3) Various phenomena of materials, including necking of steel, cyclic loading
response, volume change from contraction to expansion, strain-softening beyond the peak
strength and elastic-perfectly-plastic response can also be properly represented by the
current approach. Therefore, the proposed constitutive model provides a wide range of
application to simulating the response of other materials with complex properties.
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